Nhiệt động lực học lỗ đen

Lĩnh vực vật lý nhằm thống nhất các định luật nhiệt động lực học với sự tồn tại của chân trời sự kiện lỗ đenBản mẫu:SHORTDESC:Lĩnh vực vật lý nhằm thống nhất các định luật nhiệt động lực học với sự tồn tại của chân trời sự kiện lỗ đen
Ảnh minh họa của nghệ sĩ về hai lỗ đen đang hợp nhất, một quá trình mà các định luật nhiệt động lực học vẫn giữ
Nhiệt động lực học
Động cơ nhiệt Carnot cổ điển
Các nhánh
  • Cân bằng / Không cân bằng
Nguyên lý
Trạng thái
Quá trình
Vòng tuần hoàn
Thuộc tính hệ
Note: Biến số liên hợp in italics
  • Property diagrams
  • Intensive and extensive properties
Functions of state
  • Nhiệt độ / Entropy (giới thiệu)
  • Áp suất / Thể tích
  • Chemical potential / Số hạt
  • Vapor quality
  • Reduced properties
Process functions
Tính năng vật liệu
  • Property databases
Nhiệt dung riêng  c = {\displaystyle c=}
T {\displaystyle T} S {\displaystyle \partial S}
N {\displaystyle N} T {\displaystyle \partial T}
Độ nén  β = {\displaystyle \beta =-}
1 {\displaystyle 1} V {\displaystyle \partial V}
V {\displaystyle V} p {\displaystyle \partial p}
Độ giãn nở nhiệt  α = {\displaystyle \alpha =}
1 {\displaystyle 1} V {\displaystyle \partial V}
V {\displaystyle V} T {\displaystyle \partial T}
Phương trình
  • Quan hệ Maxwell
  • Onsager reciprocal relations
  • Phương trình Bridgman
  • Table of thermodynamic equations
  • Năng lượng tự do
  • Entropy tự do
  • Nội năng
    U ( S , V ) {\displaystyle U(S,V)}
  • Entanpi
    H ( S , p ) = U + p V {\displaystyle H(S,p)=U+pV}
  • Năng lượng tự do Helmholtz
    A ( T , V ) = U T S {\displaystyle A(T,V)=U-TS}
  • Năng lượng tự do Gibbs
    G ( T , p ) = H T S {\displaystyle G(T,p)=H-TS}
  • Lịch sử
  • Văn hóa
Lịch sử
  • Khái quát
  • Nhiệt
  • Entropy
  • Gas laws
  • Máy móc "chuyển động vĩnh viễn"
Triết học
  • Entropy và thời gian
  • Entropy và cuộc sống
  • Brownian ratchet
  • Con quỷ Maxwell
  • Nghịch lý cái chết nhiệt
  • Nghịch lý Loschmidt
  • Synergetics
Lý thuyết
  • Lý thuyết calo
  • Lý thuyết nhiệt
  • Vis viva ("lực sống")
  • Mechanical equivalent of heat
  • Motive power
Key publications
  • "An Experimental Enquiry
    Concerning ... Heat"
  • "On the Equilibrium of
    Heterogeneous Substances"
  • "Reflections on the
    Motive Power of Fire"
Dòng thời gian
  • Nhiệt động lực học
  • Động cơ nhiệt
  • Nghệ thuật
  • Giáo dục
  • Bề mặt nhiệt động lực học Maxwell
  • Entropy as energy dispersal
Nhà khoa học
Sách
  • x
  • t
  • s

Trong vật lý, nhiệt động lực học lỗ đen[1] là chuyên ngành nghiên cứu nhằm làm các định luật nhiệt động lực học tương thích với sự tồn tại của chân trời sự kiện lỗ đen. Sau khi việc nghiên cứu cơ học thống kê của bức xạ vật đen dẫn đến sự hình thành lý thuyết cơ học lượng tử, nỗ lực để hiểu được bản chất cơ học thống kê của lỗ đen đã có ảnh hưởng lớn lên cái nhìn về hấp dẫn lượng tử, dẫn đến sự hình thành của nguyên lý toàn ký.[2]

Tổng quan

Định luật hai của nhiệt động lực học yêu cầu hố đen phải có entropy. Nếu một hố đen không có entropy, định luật thứ hai có thể bị vi phạm bằng cách cho khối lượng vào hố đen. Khi ấy entropy của hố đen tăng nhiều hơn là entropy giảm của vật bị hút vào.

Năm 1972, Jacob Bekenstein đặt giả thuyết rằng hố đen phải có entropy,[3] đồng thời trong cùng năm, ông đưa ra định lý không tóc. Phát hiện của Bekenstein được đánh giá cao bởi nhà vật lý lý thuyết nổi tiếng người Anh của Đại học Cambridge, Stephen Hawking.

Năm 1973 Bekenstein đề xuất ln 2 8 π 0.0276 {\displaystyle {\frac {\ln {2}}{8\pi }}\approx 0.0276} là hằng số tỉ lệ, khẳng định nếu hằng số thực không bằng đúng số này thì cũng rất gần nó. Năm 1974, Hawking chỉ ra rằng lỗ đen phát ra bức xạ Hawking[4][5] tương ứng với một nhiệt độ nhất định (nhiệt độ Hawking).[6][7] Sử dụng mối liên hệ nhiệt động lực giữa năng lượng, nhiệt độ và entropy, Hawking xác nhận giả thuyết của Bekenstein và tìm ra hằng số tỉ lệ là 1/4:[8][9]

S BH = k B A 4 P 2 , {\displaystyle S_{\text{BH}}={\frac {k_{\text{B}}A}{4\ell _{\text{P}}^{2}}},}

trong đó SBH là entropy lỗ đen, A là diện tích của chân trời sự kiện, kBhằng số Boltzmann, và P = G / c 3 {\displaystyle \ell _{\text{P}}={\sqrt {G\hbar /c^{3}}}} độ dài Planck. Đây thường được gọi là công thức Bekenstein–Hawking. Entropy của lỗ đen tỷ lệ thuận với diện tích chân trời sự kiện của nó A. Việc entropy của lỗ đen là entropy lớn nhất cho phép bởi giới hạn Bekenstein là nhận định chính dẫn đến nguyên tắc toàn ký.[2] Mối quan hệ diện tích này được tổng quát hóa thành những vùng tùy ý bởi công thức Ryu–Takayanagi, liên hệ entropy liên đới của một lý thuyết trường bảo giác biên với lý thuyết hấp dẫn đôi của nó.[10]

Mặc dù tính toán của Hawking cho thêm bằng chứng nhiệt động lực về entropy lỗ đen, cho đến năm 1995 chưa có ai tính được entropy lỗ đen dựa trên cơ học thống kê, tức liên hệ với một lượng lớn các trạng thái vi mô. Thực tế, định lý không tóc có vẻ như ám chỉ hố đen chỉ có thế có một trạng thái vi mô.[11] Năm 1995, tình hình thay đổi khi Andrew Strominger và Cumrun Vafa tính được entropy Bekenstein–Hawking của một hố đen siêu đối xứng trong lý thuyết dây, sử dụng những phương pháp dựa trên D-brane và đối ngẫu dây.[12] Tính toán của họ được theo sau bởi nhiều kết quả tương tự về nhiều loại lỗ đen hơn, và chúng đều tuân theo công thức Bekenstein–Hawking. Tuy nhiên, với lỗ đen Schwarzschild, được coi là lỗ đen ít cực đoan nhất, quan hệ giữa trạng thái vi mô và vĩ mô vẫn chưa được miêu tả. Nỗ lực xây dựng một câu trả lời hoàn thiện trong khuôn khổ của lý thuyết dây vẫn tiếp tục.

Trong hấp dẫn lượng tử vòng (LQG), có thể hiểu trạng thái vi mô bằng một liên hệ hình học: chúng là những hình học lượng tử của chân trời sự kiện. LQG cho một giải thích hình học của sự hữu hạn của entropy và tính tỉ lệ với diện tích của chân trời sự kiện.[13][14] Từ dạng hiệp biến của lý thuyết lượng tử (bọt spin), có thể suy ra mối liên hệ đúng giữa năng lượng và diện tích (định luật thứ nhất), nhiệt độ Unruh và phân phối tạo nên entropy Hawking.[15]

Xem thêm

  • Joseph Polchinski
  • Robert Wald

Tham khảo

  1. ^ Carlip, S (2014). “Black Hole Thermodynamics”. International Journal of Modern Physics D. 23 (11): 1430023–736. arXiv:1410.1486. Bibcode:2014IJMPD..2330023C. CiteSeerX 10.1.1.742.9918. doi:10.1142/S0218271814300237.
  2. ^ a b Bousso, Raphael (2002). “The Holographic Principle”. Reviews of Modern Physics. 74 (3): 825–874. arXiv:hep-th/0203101. Bibcode:2002RvMP...74..825B. doi:10.1103/RevModPhys.74.825.
  3. ^ Bekenstein, A. (1972). “Black holes and the second law”. Nuovo Cimento Letters. 4: 99–104.
  4. ^ "First Observation of Hawking Radiation" Lưu trữ 2012-03-01 tại Wayback Machine from the Technology Review.
  5. ^ Matson, John (1 tháng 10 năm 2010). “Artificial event horizon emits laboratory analogue to theoretical black hole radiation”. Sci. Am.
  6. ^ Charlie Rose: A conversation with Dr. Stephen Hawking & Lucy Hawking Lưu trữ 2013-03-29 tại Wayback Machine
  7. ^ A Brief History of Time, Stephen Hawking, Bantam Books, 1988.
  8. ^ Hawking, S. W (1975). “Particle creation by black holes”. Communications in Mathematical Physics. 43 (3): 199–220. Bibcode:1975CMaPh..43..199H. doi:10.1007/BF02345020.
  9. ^ Majumdar, Parthasarathi (1999). “Black Hole Entropy and Quantum Gravity”. Indian J. Phys. 73.21 (2): 147. arXiv:gr-qc/9807045. Bibcode:1999InJPB..73..147M.
  10. ^ Van Raamsdonk, Mark (ngày 31 tháng 8 năm 2016). “Lectures on Gravity and Entanglement”. New Frontiers in Fields and Strings. tr. 297–351. arXiv:1609.00026. doi:10.1142/9789813149441_0005. ISBN 978-981-314-943-4.
  11. ^ Bhattacharya, Sourav (2007). “Black-Hole No-Hair Theorems for a Positive Cosmological Constant”. Physical Review Letters. 99 (20): 201101. arXiv:gr-qc/0702006. Bibcode:2007PhRvL..99t1101B. doi:10.1103/PhysRevLett.99.201101. PMID 18233129.
  12. ^ Strominger, A.; Vafa, C. (1996). “Microscopic origin of the Bekenstein-Hawking entropy”. Physics Letters B. 379 (1–4): 99–104. arXiv:hep-th/9601029. Bibcode:1996PhLB..379...99S. doi:10.1016/0370-2693(96)00345-0.
  13. ^ Rovelli, Carlo (1996). “Black Hole Entropy from Loop Quantum Gravity”. Physical Review Letters. 77 (16): 3288–3291. arXiv:gr-qc/9603063. Bibcode:1996PhRvL..77.3288R. doi:10.1103/PhysRevLett.77.3288. PMID 10062183.
  14. ^ Ashtekar, Abhay; Baez, John; Corichi, Alejandro; Krasnov, Kirill (1998). “Quantum Geometry and Black Hole Entropy”. Physical Review Letters. 80 (5): 904–907. arXiv:gr-qc/9710007. Bibcode:1998PhRvL..80..904A. doi:10.1103/PhysRevLett.80.904.
  15. ^ Bianchi, Eugenio (2012). "Entropy of Non-Extremal Black Holes from Loop Gravity". arΧiv:1204.5122 [gr-qc]. 

Danh mục

  • Bardeen, J. M.; Carter, B.; Hawking, S. W. (1973). “The four laws of black hole mechanics”. Communications in Mathematical Physics. 31 (2): 161–170. Bibcode:1973CMaPh..31..161B. doi:10.1007/BF01645742.
  • Bekenstein, Jacob D. (tháng 4 năm 1973). “Black holes and entropy”. Physical Review D. 7 (8): 2333–2346. Bibcode:1973PhRvD...7.2333B. doi:10.1103/PhysRevD.7.2333.
  • Hawking, Stephen W. (1974). “Black hole explosions?”. Nature. 248 (5443): 30–31. Bibcode:1974Natur.248...30H. doi:10.1038/248030a0.
  • Hawking, Stephen W. (1975). “Particle creation by black holes”. Communications in Mathematical Physics. 43 (3): 199–220. Bibcode:1975CMaPh..43..199H. doi:10.1007/BF02345020.
  • Hawking, S. W.; Ellis, G. F. R. (1973). The Large Scale Structure of Space–Time. New York: Cambridge University Press. ISBN 978-0-521-09906-6.
  • Hawking, Stephen W. (1994). "The Nature of Space and Time". arΧiv:hep-th/9409195. 
  • 't Hooft, Gerardus (1985). “On the quantum structure of a black hole” (PDF). Nuclear Physics B. 256: 727–745. Bibcode:1985NuPhB.256..727T. doi:10.1016/0550-3213(85)90418-3. Bản gốc (PDF) lưu trữ ngày 26 tháng 9 năm 2011.
  • Page, Don (2005). “Hawking Radiation and Black Hole Thermodynamics”. New Journal of Physics. 7 (1): 203. arXiv:hep-th/0409024. Bibcode:2005NJPh....7..203P. doi:10.1088/1367-2630/7/1/203.

Liên kết ngoài

  • Bekenstein-Hawking entropy on Scholarpedia
  • Black Hole Thermodynamics
  • Black hole entropy on arxiv.org
Hình tượng sơ khai Bài viết liên quan đến nhiệt động lực học này vẫn còn sơ khai. Bạn có thể giúp Wikipedia mở rộng nội dung để bài được hoàn chỉnh hơn.
  • x
  • t
  • s
  • x
  • t
  • s
Loại

Kích cỡ
Sự hình thành
Tính chất
Các vấn đề
Các mêtric
Giải pháp
  • Nonsingular black hole models
  • Ngôi sao đen
  • Sao tối
  • Dark-energy star
  • Gravastar
  • Magnetospheric eternally collapsing object
  • Planck star
  • Sao Q
  • Fuzzball
Tương tự
  • Optical black hole
  • Sonic black hole
Danh sách
Mô hình
Giả tưởng
  • Lỗ đen trong giả tưởng
  • Star Trek (2009)
  • Hố đen tử thần (2014)
Liên quan
  • Thể loại Thể loại
  • Trang Commons Hình ảnh
  • x
  • t
  • s
Các khái niệm trung tâm
Lỗ đen
Lý thuyết trường lượng tử
trong không thời gian cong
  • Chân không Bunch–Davies
  • Bức xạ Hawking
  • Hấp dẫn bán cổ điển
  • Hiệu ứng Unruh
Các tiếp cận
Hấp dẫn lượng tử chính tắc
Hấp dẫn lượng tử Euclid
  • Trạng thái Hartle–Hawking
Khác
  • Tam giác động lực nhân quả
  • Tập nhân quả
  • Hình học không giao hoán
  • Bọt spin
  • Thuyết chân không siêu chảy
  • Thuyết twistor
Mô hình đồ chơi
  • Hấp dẫn tô pô 2+1D
  • Mô hình CGHS
  • Hấp dẫn Jackiw–Teitelboim
  • Hấp dẫn Liouville
  • Mô hình RST
  • Lý thuyết trường lượng tử tô pô
Ứng dụng
Vũ trụ học lượng tử
  • x
  • t
  • s
Sự nghiệp
khoa học


Sách
Khoa học
  • The Large Scale Structure of Space-Time (1973)
  • Lược sử thời gian (1988)
  • Black Holes and Baby Universes and Other Essays (1993)
  • The Nature of Space and Time (1996)
  • Vũ trụ trong vỏ hạt dẻ (2001)
  • On the Shoulders of Giants (2002)
  • A Briefer History of Time (2005)
  • God Created the Integers (2005)
  • Bản thiết kế vĩ đại (2010)
  • The Dreams That Stuff Is Made Of (2011)
  • Lỗ đen: Các bài thuyết giảng trên đài (2016)
  • Brief Answers to the Big Questions (2018)
Tiểu thuyết
  • Chìa khóa Vũ trụ của George (2007)
  • George's Cosmic Treasure Hunt (2009)
  • George and the Big Bang (2011)
  • George and the Unbreakable Code (2014)
  • George and the Blue Moon (2016)
  • Unlocking the Universe (2020)
Hồi ký
Phim
  • A Brief History of Time (1991)
  • Hawking (2004)
  • Hawking (2013)
  • Thuyết vạn vật (2014)
Truyền
hình
  • God, the Universe and Everything Else (1988)
  • Stephen Hawking's Universe (1997)
  • Stephen Hawking: Master of the Universe (2008)
  • Genius of Britain (2010)
  • Into the Universe with Stephen Hawking (2010)
  • Brave New World with Stephen Hawking (2011)
  • Genius by Stephen Hawking (2016)
Gia đình
Khác
Thể loại Thể loại * Trang Commons Hình ảnh