Aerogel

Một khối aerogel trên bàn tay
Định nghĩa của IUPAC
Aerogel: Gel bao gồm một chất rắn siêu nhỏ trong đó pha phân tán là chất khí.[1][2]

Note 1: Silica vi mao, thủy tinh vi mao, và zeolit là các ví dụ phổ biến về aerogel.

Note 2: Được sửa từ tham chiếu,[3] trong đó định nghĩa là sự lặp lại của định nghĩa không chính xác của gel theo sau là một tham chiếu không rõ ràng về độ xốp của cấu trúc.
Aerogel cách nhiệt rất tốt, ngăn cách bông hoa phía trên và ngọn lửa từ đèn đốt Bunsen.

Aerogel là một vật liệu siêu nhẹ và xốp, được tổng hợp bằng cách thay thế chất lỏng trong gel bằng chất khí.[4] Kết quả thu được là một chất rắn có mật độ cực thấp[5]độ dẫn nhiệt thấp. Aerogel có thể được làm từ nhiều loại hợp chất hóa học.[6] Aerogel còn được gọi khói đông lạnh (frozen smoke),[7] khói rắn, không khí rắn, đám mây rắn, khói xanh do hình thức bên ngoài trong mờ đã cho cảm nhận về vật liệu nhẹ.

Aerogel lần đầu tiên được Samuel Stephens Kistler tạo ra vào năm 1931, là kết quả của một đặt cược với Charles Learned về việc ai có thể thay thế chất lỏng trong "thạch" bằng chất khí mà không làm cho nó bị co rút lại.[8][9]

Aerogel được sản xuất bằng cách tách thành phần chất lỏng ra khỏi gel thông qua quá trình sấy khô tới cực hạn. Phương pháp này cho phép chất lỏng được làm khô từ từ mà không làm sụp lưới chất rắn trong gel do hiện tượng mao dẫn.

Aerogel không có một vật chất được định danh với công thức hóa học cố định nhưng thuật ngữ này được sử dụng cho nhóm tất cả các vật liệu có cấu trúc hình học như đã biết.[10]

Các tính chất

Mặc dù rất nhẹ nhưng một vật làm bằng Aerogel có khả năng Mang một vật khác có trọng lượng gấp 500 đến 4.000 lần trọng lượng của nó (90% thể tích là không khí Nặng hơn không khí 3 lần và nhẹ hơn thủy tinh 1.000 lần), Nó cũng có khả năng cho không khí xuyên qua, chống cháy và có thể thấm cả dầu lẫn nước. Aerogel vừa có thể làm dây dẫn điện vừa có thể trở thành một chất cách điện tốt nhất từ trước tới nay khi được pha trộn với một số vật liệu khác.

Hiệu ứng Knudsen

Aerogels có thể có một độ dẫn nhiệt thấp hơn cả chất khí mà nó chứa. Nguyên nhân là do hiệu ứng Knudsen gây ra giảm độ dẫn nhiệt trong các chất khí khi kích thước của các khoang chứa khí xấp xỉ với quãng đường tự do. Khoang chứa khí hạn chế sự chuyển động của các phân tử chất khí, làm giảm độ dẫn nhiệt, thêm vào đó còn loại bỏ sự đối lưu. Ví dụ, độ dẫn nhiệt của không khí vào khoảng 25 mW/m·K ở nhiệt độ và áp suất tiêu chuẩn và trong một vật chứa lớn, nhưng nó giảm xuống còn khoảng 5 mW/m·K khi chứa trong một lỗ có đường kính 30 nanomet.[11]

Chú thích

  1. ^ R. G. Jones; J. Kahovec; R. Stepto; E. S. Wilks; M. Hess; T. Kitayama; W. V. Metanomski (2008). IUPAC. Compendium of Polymer Terminology and Nomenclature, IUPAC Recommendations 2008 (the "Purple Book") (PDF). RSC Publishing, Cambridge, UK.
  2. ^ Slomkowski, Stanislaw; Alemán, José V.; Gilbert, Robert G.; Hess, Michael; Horie, Kazuyuki; Jones, Richard G.; Kubisa, Przemyslaw; Meisel, Ingrid; Mormann, Werner; Penczek, Stanisław; Stepto, Robert F. T. (2011). “Terminology of polymers and polymerization processes in dispersed systems (IUPAC Recommendations 2011)” (PDF). Pure and Applied Chemistry. 83 (12): 2229–2259. doi:10.1351/PAC-REC-10-06-03.
  3. ^ A. D. McNaught; A. Wilkinson. (1997). IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") . Oxford: Blackwell Scientific Publications. doi:10.1351/goldbook. ISBN 978-0-9678550-9-7.
  4. ^ “Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007)”. Pure and Applied Chemistry. 79 (10): 1801–1829. 2007. doi:10.1351/goldbook.A00173. ISBN 0-9678550-9-8.
  5. ^ “Guinness Records Names JPL's Aerogel World's Lightest Solid”. NASA. Jet Propulsion Laboratory. ngày 7 tháng 5 năm 2002. Bản gốc lưu trữ ngày 25 tháng 5 năm 2009. Truy cập ngày 25 tháng 5 năm 2009.
  6. ^ Aegerter, M.A.; Leventis, N.; Koebel, M. M. (2011). Aerogels Handbook. Springer publishing. ISBN 978-1-4419-7477-8.
  7. ^ Taher, Abul (ngày 19 tháng 8 năm 2007). “Scientists hail 'frozen smoke' as material that will change world”. News Article. London: Times Online. Bản gốc lưu trữ ngày 12 tháng 9 năm 2007. Truy cập ngày 22 tháng 8 năm 2007.
  8. ^ Kistler, S. S. (1931). “Coherent expanded aerogels and jellies”. Nature. 127 (3211): 741. Bibcode:1931Natur.127..741K. doi:10.1038/127741a0.
  9. ^ Kistler, S. S. (1932). “Coherent Expanded-Aerogels”. Journal of Physical Chemistry. 36 (1): 52–64. doi:10.1021/j150331a003.
  10. ^ Pekala R. W. (1989). “Organic aerogels from the polycondensation of resorcinol with formaldehyde”. Journal of Materials Science. 24 (9): 3221–3227. Bibcode:1989JMatS..24.3221P. doi:10.1007/BF01139044.
  11. ^ Berge, Axel and Johansson, Pär (2012) Literature Review of High Performance Thermal Insulation. Department of Civil and Environmental Engineering, Chalmers University of Technology, Sweden
Đọc thêm
  • NASA's Stardust comet return mission on AEROGEL.
  • N. Hüsing; U. Schubert (1998). “Aerogels – Airy Materials: Chemistry, Structure, and Properties”. Angewandte Chemie International Edition. 37 (1/2): 22–45. doi:10.1002/(SICI)1521-3773(19980202)37:1/2<22::AID-ANIE22>3.0.CO;2-I.
  • Pierre A. C.; Pajonk G. M. (2002). “Chemistry of aerogels and their applications”. Chemical Reviews. 102 (11): 4243–4266. doi:10.1021/cr0101306. PMID 12428989.

Liên kết ngoài

  • Open source aerogel
  • NASA photos of aerogel
  • LBL article covering the development of aerogels
  • x
  • t
  • s
Các
lĩnh
vực
Nông nghiệp
Kiến trúc
Y
sinh
học
Hiển thị
Công nghệ hiển thị
  • FED
  • FLD
  • iMoD
  • Laser
  • LPD
  • OLED
  • OLET
  • QD-LED
  • SED
  • TPD
  • TDEL
  • TMOS
Màn hình hiển thị
  • Kính áp tròng thực tế ảo
  • Công nghệ hiển thị nổi trong màn hình
  • Công nghệ hiển thị nổi trên màn hình
  • Công nghệ hiển thị trong không trung
    • Màn hình hiển thị ba chiều trong không trung
  • Công nghệ hiển thị gắn trên đầu
  • Màn hình võng mạc ảo
Khác
Điện tử
  • Cảm biến điện tử
  • Dệt may điện tử
  • Thiết bị điện tử đa năng
  • Điện phân tử
  • Hệ thống cơ điện tử nano
  • Bộ nhớ điện trở
  • Chuyển động quay của điện tử
  • Điện tử tạm thời
Năng lượng
Sản xuất
Lưu trữ
  • Beltway battery
  • Carbon neutral fuel
  • Lưu trữ năng lượng không khí
  • Lưu trữ năng lượng bánh đà
  • Lưu trữ năng lượng lưới
  • Lưu trữ năng lượng nhiệt
  • Pin kim loại-không khí
  • Pin muối nóng chảy
  • Dây pin nano
  • Research in lithium-ion batteries
  • Pin silicon-không khí
  • Siêu tụ điện hai lớp
Khác
CNTT và
truyền thông
Chế tạo
  • In 3D
  • In 4D
  • Robot nano 3D
  • Lắp ráp phân tử
  • Robot nano phân tử đa năng
  • Robot biến hình
  • Máy in quần áo
Vật liệu
Quân sự
Lượng tử
Khoa học
thần kinh
Tự động hóa
Khoa học
vũ trụ
Du hành không gian
Tàu vũ trụ
đẩy
  • Động cơ ion
  • Laser đẩy
  • Động cơ đẩy Plasma
  • Dự án Orion (động cơ đẩy hạt nhân)
  • Động cơ đẩy xung hạt nhân
  • Buồm năng lượng mặt trời
  • Dịch chuyển cong không gian
Khác
Giao thông
vận tải
Hàng không
  • Adaptive Compliant Wing
  • Công ty Aeros
  • Máy bay trực thăng ba lô
  • Giao hàng không người lái
  • Xe bay
  • Tự động hóa trong không gian
  • Ba lô tên lửa
  • Động cơ phản lực
  • Tàu con thoi
  • Vận tải siêu âm
Đường bộ
Đường ống
  • Ống khí nén
    • Automated vacuum collection
    • Đường ống ngầm
Khác









Các
chủ
đề
  • Collingridge dilemma
  • Phát triển công nghệ khác biệt
  • Thuật ngữ Ephemeralization
  • Kỹ thuật thăm dò
  • Công nghệ hư cấu
  • Nguyên tắc Proactionary
  • Thay đổi công nghệ
    • Thất nghiệp công nghệ
  • Hội tụ công nghệ
  • Tiến hóa công nghệ
  • Mô hình công nghệ
  • Dự báo công nghệ
  • Mức độ sẵn sàng công nghệ
  • Lộ trình công nghệ
  • Triết học siêu nhân học
Tiêu đề chuẩn Sửa dữ liệu tại Wikidata