離散一様分布

離散一様分布
確率質量関数
離散一様確率質量関数 (n = 5)
n = 5 ただし n = ba + 1
累積分布関数
母数 a ( , 2 , 1 , 0 , 1 , 2 , ) {\displaystyle a\in (\dots ,-2,-1,0,1,2,\dots )}
b ( , 2 , 1 , 0 , 1 , 2 , ) {\displaystyle b\in (\dots ,-2,-1,0,1,2,\dots )\,}
n = b a + 1 {\displaystyle n=b-a+1}
k { a , a + 1 , , b 1 , b } {\displaystyle k\in \{a,a+1,\dots ,b-1,b\}}
確率質量関数 1 n for  a k b   0 otherwise  {\displaystyle {\begin{matrix}{\frac {1}{n}}&{\mbox{for }}a\leq k\leq b\ \\0&{\mbox{otherwise }}\end{matrix}}}
累積分布関数 0 for  k < a k a + 1 n for  a k b 1 for  k > b {\displaystyle {\begin{matrix}0&{\mbox{for }}k<a\\{\frac {\lfloor k\rfloor -a+1}{n}}&{\mbox{for }}a\leq k\leq b\\1&{\mbox{for }}k>b\end{matrix}}}
期待値 a + b 2 {\displaystyle {\frac {a+b}{2}}}
中央値 a + b 2 {\displaystyle {\frac {a+b}{2}}}
最頻値 N/A
分散 ( b a + 1 ) 2 1 12 = n 2 1 12 , {\displaystyle {\frac {(b-a+1)^{2}-1}{12}}={\frac {n^{2}-1}{12}},}
歪度 0 {\displaystyle 0}
尖度 6 ( n 2 + 1 ) 5 ( n 2 1 ) {\displaystyle -{\frac {6(n^{2}+1)}{5(n^{2}-1)}}}
エントロピー ln ( n ) {\displaystyle \ln(n)}
モーメント母関数 e a t e ( b + 1 ) t > n ( 1 e t ) {\displaystyle {\frac {e^{at}-e^{(b+1)t}}{-}}->{n(1-e^{t})}}
特性関数 e i a t e i ( b + 1 ) t n ( 1 e i t ) {\displaystyle {\frac {e^{iat}-e^{i(b+1)t}}{n(1-e^{it})}}}
テンプレートを表示

離散一様分布(りさんいちようぶんぷ、: discrete uniform distribution)は、確率論統計学における離散確率分布の一種であり、有限集合の全ての値について、等しく確からしい場合である。

確率変数が n 個の値 k1, k2, …, kn を同じ確率でとりうるとき、離散一様分布と言える。任意の ki の確率は 1/n である。離散一様分布の単純な例としてサイコロがある。その場合の k がとりうる値は 1, 2, 3, 4, 5, 6 で、1回サイコロを振ったとき、それぞれの値が出る確率は 1/6 である。2個のサイコロを振って和をとると、もはや一様分布ではなくなり、とりうる値(2 から 12)によって確率が変わってくる。

離散一様分布の確率変数がとりうる値が実数の場合、累積分布関数を退化分布を使って表すことができる。すなわち、

F ( k ; a , b , n ) = 1 n i = 1 n H ( k k i ) {\displaystyle F(k;a,b,n)={1 \over n}\sum _{i=1}^{n}H(k-k_{i})}

ここで、ヘヴィサイドの階段関数 H ( x x 0 ) {\displaystyle H(x-x_{0})} は、x0 を中心とする退化分布の累積分布関数である。この式は、各転移点で一貫した規定が使われると想定している。

非復元抽出による最大値の推定

整数 1, 2, …, N から k 個の標本が非復元抽出され、離散一様分布と同様に、標本の抽出のされ方に整数による差はないとする。ここで未知の最大値 N を推定する問題が生じる。このような問題を一般に German tank problem(ドイツ戦車問題)と呼び、第二次世界大戦中のドイツでの戦車生産数の最大値を推定するという問題に由来する。

最大値のUMVU推定によると、次のようになる。

N ^ = k + 1 k m 1 = m + m k 1 {\displaystyle {\hat {N}}={\frac {k+1}{k}}m-1=m+{\frac {m}{k}}-1}

ここで m は標本内の最大値、k は標本数である[1][2]。これは maximum spacing estimation の非常に単純な例と見ることもできる。

この式は直観的に次のように理解できる。

「標本の最大値に観測された標本値の平均間隔を加える」

この間隔は標本の最大値の負のバイアスを補填するよう加算され、母集団の最大値の推定とする[notes 1]

この分散は次のようになる[1]

1 k ( N k ) ( N + 1 ) ( k + 2 ) N 2 k 2  for small samples  k N {\displaystyle {\frac {1}{k}}{\frac {(N-k)(N+1)}{(k+2)}}\approx {\frac {N^{2}}{k^{2}}}{\text{ for small samples }}k\ll N}

つまり標準偏差は約 N/k で(母集団の)標本間の間隔の平均であり、上の m/k に似ている。

標本の最大値は母集団の最大値の最尤推定量だが、これまで述べたようにバイアスがかかっている。

標本が数として捉えられず、単に識別可能あるいは標識を付与できるなら、母集団の大きさの推定を標識再捕獲法で行うことができる。

関連項目

脚注

  1. ^ 標本の最大値は母集団の最大値を超えることは決してないが、小さくなることはありうる。したがって、バイアスのある推定値である。母集団の最大値は小さく推定される傾向がある。

出典

  1. ^ a b Johnson, Roger (1994), “Estimating the Size of a Population”, Teaching Statistics 16 (2 (Summer)), doi:10.1111/j.1467-9639.1994.tb00688.x 
  2. ^ Johnson, Roger (2006), “Estimating the Size of a Population”, Getting the Best from Teaching Statistics, http://www.rsscse.org.uk/ts/gtb/johnson.pdf 
離散単変量で
有限台
離散単変量で
無限台
  • ベータ負二項(英語版)
  • ボレル(英語版)
  • コンウェイ–マクスウェル–ポワソン(英語版)
  • 離散位相型(英語版)
  • ドラポルト(英語版)
  • 拡張負二項(英語版)
  • ガウス–クズミン
  • 幾何
  • 対数(英語版)
  • 負の二項
  • 放物フラクタル(英語版)
  • ポワソン
  • スケラム(英語版)
  • ユール–サイモン(英語版)
  • ゼータ(英語版)
連続単変量で
有界区間に台を持つ
  • 逆正弦(英語版)
  • ARGUS(英語版)
  • バルディング–ニコルス(英語版)
  • ベイツ(英語版)
  • ベータ
  • beta rectangular(英語版)
  • アーウィン–ホール(英語版)
  • クマラスワミー(英語版)
  • ロジット-正規(英語版)
  • 非中心ベータ(英語版)
  • raised cosine(英語版)
  • reciprocal(英語版)
  • 三角
  • U-quadratic(英語版)
  • 一様
  • ウィグナー半円
連続単変量で
半無限区間に台を持つ
  • ベニーニ(英語版)
  • ベンクタンダー第一種(英語版)
  • ベンクタンダー第二種(英語版)
  • 第2種ベータ
  • Burr(英語版)
  • カイ二乗
  • カイ(英語版)
  • Dagum(英語版)
  • デービス(英語版)
  • 指数-対数(英語版)
  • アーラン
  • 指数
  • F
  • folded normal(英語版)
  • Flory–Schulz(英語版)
  • フレシェ
  • ガンマ
  • gamma/Gompertz(英語版)
  • 一般逆ガウス(英語版)
  • Gompertz(英語版)
  • half-logistic(英語版)
  • half-normal(英語版)
  • Hotelling's T-squared(英語版)
  • 超アーラン(英語版)
  • 超指数(英語版)
  • hypoexponential(英語版)
  • 逆カイ二乗(英語版)
    • scaled inverse chi-squared(英語版)
  • 逆ガウス
  • 逆ガンマ
  • コルモゴロフ
  • レヴィ
  • 対数コーシー
  • 対数ラプラス(英語版)
  • 対数ロジスティック(英語版)
  • 対数正規
  • ロマックス(英語版)
  • 行列指数(英語版)
  • マクスウェル–ボルツマン
  • マクスウェル–ユットナー(英語版)
  • ミッタク-レフラー(英語版)
  • 仲上(英語版)
  • 非心カイ二乗
  • パレート
  • 位相型(英語版)
  • poly-Weibull(英語版)
  • レイリー
  • relativistic Breit–Wigner(英語版)
  • ライス(英語版)
  • shifted Gompertz(英語版)
  • 切断正規
  • タイプ2ガンベル(英語版)
  • ワイブル
    • 離散ワイブル(英語版)
  • ウィルクスのラムダ(英語版)
連続単変量で
実数直線全体に台を持つ
連続単変量で
タイプの変わる台を持つ
  • 一般極値
  • 一般パレート(英語版)
  • マルチェンコ–パストゥール(英語版)
  • q-指数(英語版)
  • q-ガウス
  • q-ワイブル(英語版)
  • shifted log-logistic(英語版)
  • トゥーキーのラムダ(英語版)
混連続-離散単変量
  • rectified Gaussian(英語版)
多変量 (結合)
【離散】
エウェンズ(英語版)
多項
ディリクレ多項(英語版)
負多項(英語版)
【連続】
ディリクレ
一般ディリクレ(英語版)
多変量正規
多変量安定(英語版)
多変量 t(英語版)
正規逆ガンマ(英語版)
正規ガンマ(英語版)
行列値
逆行列ガンマ(英語版)
逆ウィッシャート(英語版)
行列正規(英語版)
行列 t(英語版)
行列ガンマ(英語版)
正規逆ウィッシャート(英語版)
正規ウィッシャート(英語版)
ウィッシャート
方向
【単変量 (円周) 方向
円周一様(英語版)
単変数フォン・ミーゼス
wrapped 正規(英語版)
wrapped コーシー(英語版)
wrapped 指数(英語版)
wrapped 非対称ラプラス(英語版)
wrapped レヴィ(英語版)
【二変量 (球面)】
ケント(英語版)
【二変量 (トロイダル)】
二変数フォン・ミーゼス(英語版)
【多変量】
フォン・ミーゼス–フィッシャー(英語版)
ビンガム(英語版)
退化特異
  • 円周(英語版)
  • 混合ポワソン(英語版)
  • 楕円(英語版)
  • 指数
  • 自然指数(英語版)
  • 位置尺度(英語版)
  • 最大エントロピー(英語版)
  • 混合(英語版)
  • ピアソン(英語版)
  • トウィーディ(英語版)
  • wrapped(英語版)
サンプリング法(英語版)
  • 一覧記事 一覧(英語版)
  • カテゴリ カテゴリ