Tizenkétszögszámok

A tizenkétszögszámok a figurális számokon belül a sokszögszámok közé tartoznak. Az n-edik tizenkétszögszám Tn a közös csúcsból rajzolt, legfeljebb n pont oldalhosszúságú szabályos tizenkétszögek körvonalai egymástól különböző pontjainak száma.

Az n-edik tizenkétszögszám általánosan a következő képlettel adható meg:

T n = 5 n 2 4 n ( n > 0 ) . {\displaystyle T_{n}=5n^{2}-4n\quad (n>0).}

Az első néhány tizenkétszögszám:

1, 12, 33, 64, 105, 156, 217, 288, 369, 460, 561, 672, 793, 924, 1065, 1216, 1377, 1548, 1729, 1920, 2121, 2332, 2553, 2784, 3025, 3276, 3537, 3808, 4089, 4380, 4681, 4992, 5313, 5644, 5985, 6336, 6697, 7068, 7449, 7840, 8241, 8652, 9073, 9504, 9945 … (A051624 sorozat az OEIS-ben)

A tizenkétszögszámok előállíthatók az n-edik négyzetszámnak és négyszer az (n−1)-edik téglalapszámnak az összeadásával:

T n = n 2 + 4 ( n 2 n ) . {\displaystyle T_{n}=n^{2}+4(n^{2}-n).}

Párosság

A tizenkétszögszámok párossága váltakozik, tízes számrendszerben pedig utolsó számjegyük az 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 mintát követi.

Általánosított tizenkétszögszámok

Az általánosított tizenkétszögszámok is a fenti képlettel állíthatók elő, de a nullát és a negatív egész számokat is megengedve. A következő sorrendben szokás az általánosított tizenkétszögszámokat előállítani: 0, 1, −1, 2, −2, 3, −3, 4..., ami a következő sorozatot adja:

0, 1, 9, 12, 28, 33, 57, 64, 96, 105, 145, 156, 204, 217, 273, 288, 352, 369, 441, 460, 540, 561, 649, 672, 768, 793, 897, 924, 1036, 1065, 1185, 1216, 1344, 1377, 1513, 1548, 1692, 1729, 1881, 1920, 2080, 2121, 2289, 2332, 2508, 2553, 2737, 2784, 2976, 3025 … (A195162 sorozat az OEIS-ben)

Minden második általánosított tizenkétszögszám „normál” tizenkétszögszám is egyben.

Tesztelés tizenkétszögszámokra

Az n-edik tizenkétszögszám, x n {\displaystyle x_{n}} megadási képletét n-re megoldva a következő képletet kapjuk:

n = 5 x n + 4 + 2 5 . {\displaystyle n={\frac {{\sqrt {5x_{n}+4}}+2}{5}}.}

Tetszőleges x szám tizenkétszögszám mivolta tesztelhető a fenti képletbe való behelyettesítéssel. Ha n egész számra jön ki, akkor x az n-edik tizenkétszögszám. Ha n nem egész szám, akkor x nem tizenkétszögszám.

Ez egyben tekinthető x tizenkétszöggyöke kiszámításának is.

Kapcsolódó szócikkek

Jegyzetek


Sablon:Természetes számok
  • m
  • v
  • sz
Természetes számok osztályozása
Hatványok és kap-
csolódó számok
a × 2b ± 1
alakú számok
Egyéb polinomikus
számok
Rekurzívan meg-
adott számok
Más számok meg-
határozott halmazával
rendelkező számok
Specifikus össze-
gekkel kifejez-
hető számok
Szitával
generált számok
Kódokkal
kapcsolatos
  • Meertens
Figurális
számok
2 di-
men-
ziós
közép-
pontos
nem közép-
pontos
3 di-
men-
ziós
közép-
pontos
nem közép-
pontos
4 di-
men-
ziós
közép-
pontos
  • Középpontos pentatóp-
  • Négyzetes háromszög
nem közép-
pontos
  • Pentatóp-
Álprímek
Kombinatorikus
számok
  • Bell
  • Cake
  • Catalan
  • Dedekind
  • Delannoy
  • Euler
  • Fuss–Catalan
  • Lusta ételszállító-sorozat
  • Lobb
  • Motzkin
  • Narayana
  • Rendezett Bell
  • Schröder
  • Schröder–Hipparchus
Számelméleti
függvények
σ(n) alapján
Ω(n) alapján
φ(n) alapján
s(n)
Egyéb
kongruenciák
  • Wieferich
  • Wall–Sun–Sun
  • Wolstenholme-prím
  • Wilson
  • Egyéb prím-
    tényezővel vagy
    osztóval kapcso-
    latos számok
    Szórakoztató
    matematika
    Szám-
    rendszer-
    függő
    számok