Tán xạ Rayleigh

Bầu trời trên Trái Đất có màu xanh da trời là do tán xạ Rayleigh của khí quyển Trái Đất.
Tán xạ
Tán xạ electron
Sơ đồ Feynman về sự tán xạ giữa hai electron nhờ giải phóng một photon ảo
  • x
  • t
  • s

Tán xạ Rayleigh (/ˈrli/ RAY-lee), được đặt theo tên một nhà vật lý người Anh - Lord Rayleigh (John William Strutt),[1] là một loại tán xạ đàn hồi của ánh sáng hoặc sóng điện từ bởi các hạt hay các vùng không đồng nhất trong môi trường có kích thước rất nhỏ hơn so với bước sóng của ánh sáng.

Kiểu tán xạ này làm lệch hướng mạnh các tia sáng có bước sóng ngắn nhất.

Tán xạ Rayleigh hay được quan sát khi ánh sáng đi qua các chất rắn, lỏng hay khí trong suốt. Ánh sáng trắng từ Mặt Trời đi vào khí quyển của Trái Đất bị cũng tán xạ kiểu Rayleigh, tạo nên bầu trời màu xanh da trời.

Tán xạ Rayleigh có thể coi như một trường hợp đặc biệt của tán xạ Mie, khi lấy giới hạn hệ số kích thước tiến dần đến 0 và hơn nữa.

Công thức

Hệ số tán xạ, ks, trong tán xạ Rayleigh là:

k s = 2 π 5 3 n ( m 2 1 m 2 + 2 ) 2 d 6 λ 4 {\displaystyle k_{s}={\frac {2\pi ^{5}}{3}}n\left({\frac {m^{2}-1}{m^{2}+2}}\right)^{2}{\frac {d^{6}}{\lambda ^{4}}}}

Ở đây, nmật độ hạt (số hạt trong một đơn vị thể tích); mchiết suất của các hạt; d là kích thước trung bình của các hạt; λ là bước sóng của ánh sáng.

Hàm tán xạ, P(θ) với θ là góc tán xạ, của tán xạ Rayleigh, khi không quan tâm đến sự phân cực, là:

P ( θ ) = 3 4 ( c o s ( θ ) 2 + 1 ) {\displaystyle P(\theta )={\frac {3}{4}}(cos(\theta )^{2}+1)}

Các công thức trên áp dụng khá chính xác khi hệ số kích thước, x = d / λ;, (tỷ lệ giữa kích thước của các hạt trong môi trường truyền ánh sáng với bước sóng của ánh sáng) nhỏ (x<1/10).

Bầu trời trên Trái Đất

Tán xạ Rayleigh khi hoàng hôn, có sự tham gia của các đám mây phản chiếu lại ánh sáng đi theo đường gần chân trời, tạo nên màu đỏ rực rỡ.

Các phân tử oxy và N2 trong bầu khí quyển Trái Đất có kích thước vào cỡ nanômét, trong khi bước sóng ánh sáng vào cỡ 100 đến 1000 nanômét. Bản thân các phân tử này tán xạ rất yếu ánh sáng, do kích thước quá nhỏ, nhưng chúng lại luôn chuyển động nhiệt hỗn loạn tạo nên các vùng khí quyển không đồng nhất vi mô, có kích thước vào cỡ 10 nanômét. Do vậy các công thức Rayleigh áp dụng được cho tán xạ trên bầu trời Trái Đất. Xem thêm tham khảo.

Áp dụng các công thức trên, có thể mô phỏng lại giống như quan sát thực tế một bầu trời xanh da trời, khi Mặt Trời lên cao. Lý do là các ánh sáng xanh da trời có bước sóng ngắn, và theo công thức trên, với hệ số tán xạ cao, dễ dàng bị đổi hướng để đến mắt người quan sát, hơn ánh sáng đỏ.

Tuy nhiên khi Mặt Trời ở gần đường chân trời, vẫn là tán xạ này, lại đem lại sắc đỏ cho bầu trời, đặc biệt là gần phía Mặt Trời. Đó là do những ánh sáng đến được mắt người quan sát lúc này đi theo đường xuyên ngang qua lớp khí quyển dày. Ánh sáng đỏ ít bị tán xạ được truyền thẳng đến mắt nhiều hơn. Ánh sáng xanh da trời bị tán xạ mất nhiều, khi qua lớp khí quyển dày theo đường gần chân trời. Sau khi Mặt Trời đã khuất sau đường chân trời, chúng ta không thấy trực tiếp ánh sáng của Mặt Trời; nhưng nếu có các đám mây trên cao, chúng sẽ phản xạ lại ánh sáng đỏ xuống mặt đất, tạo nên cảnh tượng hùng vĩ của hoàng hônbình minh.

Chứng minh

Có nhiều phương pháp lý luận dựa trên các định luật vật lý để tìm ra các công thức Rayleigh. Chúng đều gần như tương đương nhau.

Cách mà Lord Rayleigh đã tìm ra công thức mang tên mình là sử dụng điện động lực học cổ điển. Với cách nhìn hiện đại ngày nay, các công thức Rayleigh có thể được coi là trường hợp đặc biệt của tán xạ Mie, khi lấy giới hạn hệ số kích thước tiến dần đến 0.

Dùng điện động lực học

Suy diễn từ lý thuyết Mie

Phân cực

Xem thêm

Tham khảo

  1. ^ Lord Rayleigh (John Strutt) đã hoàn thành lý thuyết của mình về hiện tượng tán xạ này thông qua một loạt các bài báo; xem thêm Công trình.
  • Bucholtz A., "Rayleigh-scattering calculations for the terrestrial atmosphere", Applied Optics, vol 34, pp2765–2773, 1995
Hình tượng sơ khai Bài viết về chủ đề vật lý này vẫn còn sơ khai. Bạn có thể giúp Wikipedia mở rộng nội dung để bài được hoàn chỉnh hơn.
  • x
  • t
  • s
  • x
  • t
  • s
Hiện tượng quang học
  • Sự truyền thẳng của ánh sáng
  • Phản xạ ánh sáng
  • Khúc xạ ánh sáng
  • Giao thoa ánh sáng
    • Giao thoa bản mỏng
  • Nhiễu xạ ánh sáng
    • Nhiễu xạ qua một khe
    • Nhiễu xạ qua một lỗ tròn
    • Nhiễu xạ qua hai khe
    • Nhiễu xạ qua nhiều khe
    • Nhiễu xạ tia X
  • Hiện tượng phân cực ánh sáng
    • Phân cực vì phản xạ
    • Phân cực vì lưỡng chiết
  • Hiện tượng hấp thụ ánh sáng
  • Hiện tượng tán xạ ánh sáng
  • Quang sai
    • Cầu sai dọc
    • Côma
    • Loạn thị
    • Sự cong trường
    • Méo ảnh
    • Sắc sai
Dụng cụ và thiết bị quang học
Các khái niệm cơ bản
Các đại lượng trắc quang
  • Dòng quang năng
  • Hàm thị kiến
  • Quang thông
  • Cường độ của nguồn
  • Cường độ sáng của nguồn
  • Độ trưng năng lượng
  • Độ trưng sáng
  • Độ chói năng lượng
  • Độ chói sáng
  • Độ rọi năng lượng
  • Độ rọi sáng
  • Độ rọi của ảnh
Các thí nghiệm
  • Thí nghiệm Young
  • Thí nghiệm gương Fresnel
  • Thí nghiệm lưỡng lăng kính Fresnel
  • Thí nghiệm Bán thấu kính Billet
  • Thí nghiệm gương Loyd
  • Thí nghiệm Compton
Các ngành nhỏ của Quang học
  • Quang hình học
  • Quang sóng
  • Quang lượng tử
  • x
  • t
  • s
Quang phổ Raman
Kỹ thuật
  • Quang phổ Raman phản Stokes kết hợp
  • Hoạt tính quang học Raman
  • Quang phổ Raman cộng hưởng
  • Quang phổ Raman phản Stokes kết hợp phân cực quay
  • Quang phổ Raman dịch không gian
  • Quang phổ Raman kích thích
  • Quang phổ Raman tăng cường bề mặt
  • Tip-enhanced Raman spectroscopy
  • Quang phổ Raman chuyển dời
Ứng dụng
Lý thuyết
Tạp chí
  • Journal of Raman Spectroscopy
  • Vibrational Spectroscopy