Số nguyên tố Ramanujan

Số nguyên tố Ramanujan là tên gọi các số nguyên tố thỏa mãn một kết quả do nhà toán học Ấn Độ Srinivasa Ramanujan tìm ra.

Nguồn gốc và định nghĩa

Năm 1919, Ramanujan công bố một cách chứng minh định đề Bertrand.[1] Về khúc cuối bài nghiên cứu này (chỉ hai trang), Ramanujan rút ra thêm một kết luận nữa, là:

π ( x ) π ( x 2 ) 1 , 2 , 3 , 4 , 5 , {\displaystyle \pi (x)-\pi \left({\frac {x}{2}}\right)\geq 1,2,3,4,5,\ldots } lần lượt tương ứng với x 2 , 11 , 17 , 29 , 41 , {\displaystyle x\geq 2,11,17,29,41,\ldots }

trong đó hàm π {\displaystyle \pi } (x) là số các số nguyên tố ≤ x.

Kết quả này, khi đọc ngược lại, trở thành định nghĩa của số nguyên tố Ramanujan, và các số 2, 11, 17, 29, 41 là những con số đầu trong các số nguyên tố Ramanujan. Nói cách khác:

Số nguyên tố Ramanujan là các số Rn sao cho Rn là số nhỏ nhất thỏa mãn điều kiện
π ( x ) π ( x / 2 ) {\displaystyle \pi (x)-\pi (x/2)} n, cho mọi xRn

Hay nói cách khác nữa:

Số nguyên tố Ramanujan là các số nguyên Rn sao cho Rn là số nhỏ nhất có thể bảo đảm có n số nguyên tố giữa xx/2 cho mọi xRn

Rn là số nguyên nhỏ nhất thỏa mãn điều kiện trên, nên Rn phải là số nguyên tố: Mỗi khi hàm π ( x ) π ( x / 2 ) {\displaystyle \pi (x)-\pi (x/2)} tăng lên 1, đó là do có thêm một số nguyên tố nữa.

Tham khảo

  1. ^ S. Ramanujan (2000). Collected papers of Srinivasa Ramanujan. American Mathematical Society. tr. 208-209. (tiếng Anh)
Hình tượng sơ khai Bài viết liên quan đến toán học này vẫn còn sơ khai. Bạn có thể giúp Wikipedia mở rộng nội dung để bài được hoàn chỉnh hơn.
  • x
  • t
  • s
  • x
  • t
  • s
Phân loại các số nguyên tố
Theo công thức
  • Fermat (22n + 1)
  • Mersenne (2p − 1)
  • Mersenne kép (22p−1 − 1)
  • Wagstaff (2p + 1)/3
  • Proth (k·2n + 1)
  • Giai thừa (n! ± 1)
  • Primorial (pn# ± 1)
  • Euclid (pn# + 1)
  • Pythagorean (4n + 1)
  • Pierpont (2u·3v + 1)
  • Quartan (x4 + y4)
  • Solinas (2a ± 2b ± 1)
  • Cullen (n·2n + 1)
  • Woodall (n·2n − 1)
  • Cuban (x3 − y3)/(x − y)
  • Carol (2n − 1)2 − 2
  • Kynea (2n + 1)2 − 2
  • Leyland (xy + yx)
  • Thabit (3·2n − 1)
  • Mills (A3n)
Theo dãy số nguyên
Theo tính chất
Phụ thuộc vào hệ số
  • May mắn
  • Nhị diện
  • Palindromic
  • Emirp
  • Repunit (10n − 1)/9
  • Hoán vị
  • Vòng
  • Rút ngắn được
  • Strobogrammatic
  • Tối thiểu
  • Yếu
  • Đầy đủ
  • Đơn nhất
  • Nguyên thủy
  • Smarandache–Wellin
Theo mô hình
  • Sinh đôi (p, p + 2)
  • Chuỗi bộ đôi (n − 1, n + 1, 2n − 1, 2n + 1, …)
  • Bộ tam (p, p + 2 or p + 4, p + 6)
  • Bộ tứ (p, p + 2, p + 6, p + 8)
  • Bộ k
  • Họ hàng (p, p + 4)
  • Sexy (p, p + 6)
  • Chen
  • Sophie Germain (p, 2p + 1)
  • chuỗi Cunningham (p, 2p ± 1, …)
  • An toàn (p, (p − 1)/2)
  • Trong cấp số cộng (p + a·n, n = 0, 1, …)
  • Đối xứng (consecutive p − n, p, p + n)
Theo kích thước
  • Hàng nghìn (1,000+ chữ số)
  • Hàng chục nghìn (10,000+ chữ số)
  • Hàng triệu (1,000,000+ chữ số)
  • Lớn nhất từng biết
Số phức
Hợp số
Chủ đề liên quan
  • Số có thể nguyên tố
  • Số nguyên tố cấp công nghiệp
  • Số nguyên tố bất chính
  • Công thức của số nguyên tố
  • Khoảng cách nguyên tố
50 số nguyên tố đầu
  • 2
  • 3
  • 5
  • 7
  • 11
  • 13
  • 17
  • 19
  • 23
  • 29
  • 31
  • 37
  • 41
  • 43
  • 47
  • 53
  • 59
  • 61
  • 67
  • 71
  • 73
  • 79
  • 83
  • 89
  • 97
  • 101
  • 103
  • 107
  • 109
  • 113
  • 127
  • 131
  • 137
  • 139
  • 149
  • 151
  • 157
  • 163
  • 167
  • 173
  • 179
  • 181
  • 191
  • 193
  • 197
  • 199
  • 211
  • 223
  • 227
  • 229