Bình phương

5 ⋅ 5, hay 52 (5 mũ 2, 5 bình phương). Mỗi khối đại diện cho một đơn vị, 1⋅1, và toàn bộ hình vuông đại diện cho diện tích hình vuông đó, hay là 5 ⋅ 5.

Bình phương hay mũ 2 là phép toán áp dụng cho mọi số thực hoặc số phức. Bình phương của một số là tích của số đó với chính bản thân nó 2 lần.[1] Một cách tổng quát, bình phương chính là lũy thừa bậc 2 của một số,[1]phép toán ngược với nó là phép khai căn bậc 2.

Bảng bình phương

n n2 n n2 n n2
1 1 12 144 23 529
2 4 13 169 24 576
3 9 14 196 25 625
4 16 15 225 26 676
5 25 16 256 27 729
6 36 17 289 28 784
7 49 18 324 29 841
8 64 19 361 30 900
9 81 20 400 31 961
10 100 21 441 32 1024
11 121 22 484 33 1089

Tính chất

Bình phương của số thực luôn là số ≥0. Bình phương của một số nguyên gọi là số chính phương.

Tính chất của số chính phương

  • Số chính phương chỉ có thể tận cùng là: 0; 1; 4; 5; 6; 9. Số chính phương không thể tận cùng là: 2; 3; 7; 8.
  • Một số chính phương có tận cùng là 5 thì chữ số hàng chục là 2. Một số chính phương có tận cùng là 6 thì chữ số hàng chục là lẻ.
    • Chứng minh: Số chính phương a = b 2 {\displaystyle a=b^{2}} có tận cùng là 5 suy ra b {\displaystyle b} có tận cùng là 5 {\displaystyle 5} . Đặt b = 10 x + 5 {\displaystyle b=10x+5} . Ta có ( 10 x + 5 ) 2 = 100 x 2 + 100 x + 25 = 100 ( x 2 + x ) + 25 {\displaystyle (10x+5)^{2}=100x^{2}+100x+25=100(x^{2}+x)+25} , có hai chữ số tận cùng là 25, do đó chữ số hàng chục là 2. Số chính phương a = b 2 {\displaystyle a=b^{2}} có tận cùng là 6 suy ra b {\displaystyle b} có tận cùng là 4 hoặc 6. Xét
      ( 10 x + 4 ) 2 = 100 x 2 + 80 x + 16 = 6 + 10 ( 10 x 2 + 8 x + 1 ) = 6 + 10 [ 2 ( 5 x 2 + 4 x ) + 1 ] {\displaystyle (10x+4)^{2}=100x^{2}+80x+16=6+10(10x^{2}+8x+1)=6+10[2(5x^{2}+4x)+1]}
      ( 10 x + 6 ) 2 = 100 x 2 + 120 x + 36 = 6 + 10 ( 10 x 2 + 12 x + 3 ) = 6 + 10 [ 2 ( 5 x 2 + 6 x + 1 ) + 1 ] {\displaystyle (10x+6)^{2}=100x^{2}+120x+36=6+10(10x^{2}+12x+3)=6+10[2(5x^{2}+6x+1)+1]}
      . Do đó chữ số hàng chục là số lẻ.
  • Khi phân tích một số chính phương ra thừa số nguyên tố thì các thừa số chỉ chứa số mũ chẵn.
  • Số lượng các ước của một số chính phương là một số lẻ.
  • N là số chính phương thì N chia hết cho một số nguyên tố khi và chỉ khi N chia hết cho bình phương của số nguyên tố đó (trừ trường hợp N=0; N=1).
  • Tích của nhiều số chính phương là một số chính phương.
    • Ví dụ: a2 × b2 × c2 = (a × b × c)2

Ký hiệu

Số mũ ² bên phải của số được bình phương.

Ví dụ

22 = 2 × 2 = 4
152 = 15 × 15 = 225
(- 0,5)2 = 0,25
i 2 = 1 {\displaystyle i^{2}=-1}
( 3 + 2 i ) 2 = 5 + 12 i {\displaystyle (3+2i)^{2}=5+12i}

Chú thích

  1. ^ a b Phan Đức Chính (2011), tr. 27

Thư mục

Các chủ đề chính trong toán học
Nền tảng toán học | Đại số | Giải tích | Hình học | Lý thuyết số | Toán học rời rạc | Toán học ứng dụng |
Toán học giải trí | Toán học tô pô | Xác suất thống kê
Hình tượng sơ khai Bài viết liên quan đến toán học này vẫn còn sơ khai. Bạn có thể giúp Wikipedia mở rộng nội dung để bài được hoàn chỉnh hơn.
  • x
  • t
  • s