Gaz yasaları

Termodinamik
Dallar
Sistemler
Durum
Süreçler
  • İzobarik
  • İzokorik
  • İzotermal
  • Adyabatik
  • İzentropik
  • İzentalpik
  • Kuazi-statik
  • Politropik
  • Serbest genişleme
  • Tersinirlik
  • Tersinmezlik
  • Endotersinirlik
Çevrimler
Sistem özellikleri
Not: Eşlenik değişkenler italik yazılmıştır.
  • Özellik diyagramları
  • Yeğin ve yaygın özellikler
Süreç fonksiyonları
Hâl fonksiyonları
  • Sıcaklık / Entropi (giriş)
  • Basınç / Hacim
  • Kimyasal potansiyel / Parçacık sayısı
  • Buhar kalitesi
  • İndirgenmiş özellik
Malzeme özellikleri
  • Özellik veritabanları
Isı sığası  c = {\displaystyle c=}
T {\displaystyle T} S {\displaystyle \partial S}
N {\displaystyle N} T {\displaystyle \partial T}
Sıkıştırılabilirlik  β = {\displaystyle \beta =-}
1 {\displaystyle 1} V {\displaystyle \partial V}
V {\displaystyle V} p {\displaystyle \partial p}
Genleşme  α = {\displaystyle \alpha =}
1 {\displaystyle 1} V {\displaystyle \partial V}
V {\displaystyle V} T {\displaystyle \partial T}
Denklemler
Potansiyeller
  • İç enerji
    U ( S , V ) {\displaystyle U(S,V)}
  • Entalpi
    H ( S , p ) = U + p V {\displaystyle H(S,p)=U+pV}
  • Helmholtz serbest enerjisi
    A ( T , V ) = U T S {\displaystyle A(T,V)=U-TS}
  • Gibbs serbest enerjisi
    G ( T , p ) = H T S {\displaystyle G(T,p)=H-TS}
  • Tarih
  • Kültür
Tarih
  • Genel
  • Entropi
  • Gaz yasaları
  • "Devridaim" makineleri
Felsefe
Teoriler
  • Kalorik teorisi
  • Vis viva ("yaşam gücü")
  • Isının mekanik eşdeğeri
  • Tahrik gücü
Temel yayınlar
  • "An Experimental Enquiry
    Concerning ... Heat"
  • "On the Equilibrium of
    Heterogeneous Substances"
  • "Reflections on the
    Motive Power of Fire"
Zaman çizelgeleri
  • Sanat
  • Eğitim
  • Maxwell'in termodinamik yüzeyi
  • Enerji dağıtımı olarak entropi
Diğer
  • Çekirdeklenme
  • Öztoplanma
  • Özörgütlenme
  • Düzen ve düzensizlik
  • Kategori Kategori
  • g
  • t
  • d

Gaz yasaları, gazlardaki termodinamik sıcaklık (T), basınç (P) ve hacim (V) aralarındaki ilişkileri açıklayan bir takım kanundur. Rönesans'ın geç dönemleriyle 19. yüzyıl arasındaki dönemde bulunmuş birkaç yasadan oluşur.

Amagat yasası

Bir gaz karışımının hacminin, karışımı oluşturan gazların aynı koşullarda ayrı ayrı kaplayacakları hacimlerin toplamına eşit olduğunu açıklar.

  • H2: 18 2 + 4 + 3 2 = 4 L {\displaystyle {18 \over 2+4+3}\cdot 2=4L}
  • He: 18 2 + 4 + 3 4 = 8 L {\displaystyle {18 \over 2+4+3}\cdot 4=8L}
  • Ar: 18 2 + 4 + 3 3 = 6 L {\displaystyle {18 \over 2+4+3}\cdot 3=6L}

Boyle-Mariotte yasası

Gazların hacimlerinin basınçla ters orantılı olduğunu anlatan yasadır.

P 1 V 1 = P 2 V 2 {\displaystyle P_{1}V_{1}=P_{2}V_{2}\,}

Charles yasası

Bu yasa gazların hacminin sıcaklıkla doğru orantılı olduğunu açıklar.

V 1 T 1 = V 2 T 2 {\displaystyle {\frac {V_{1}}{T_{1}}}={\frac {V_{2}}{T_{2}}}\,}

İdeal gazlar

En baştaki gaz yasaları - Boyle yasası (1662), Charles yasası (1787-1802) ve Gay-Lussac yasası (1809) - birleşip, toplam gaz yasasını oluştururlar:

P 1 V 1 T 1 = P 2 V 2 T 2 {\displaystyle {\frac {P_{1}V_{1}}{T_{1}}}={\frac {P_{2}V_{2}}{T_{2}}}}

Daha sonra Avogadro yasasının da eklenmesiyle ideal gaz yasası oluşmuştur:

P V = n R T {\displaystyle \qquad \qquad PV=nRT}

(Yukardakiler SI birimleridir. Yasa, her birimle çalışmaktadır, ancak gaz sabiti buna göre çevrilmeli ve sıcaklığın da mutlak sıfırda tam sıfır olduğu bir sistem kullanılmalıdır)

Diğer önemli gaz yasaları olan Dalton yasası, kinetik teori ve Graham yasası da gazların basınç, hacim ve sıcaklığa göre nasıl davrandıklarını açıklar.

Bu yasaların tamı tamına geçerli olduğu tüm gazlara, ideal gaz denir. İdeal bir gaz yoktur ancak bazı gazlar, bu yasalara daha çok uyabilir.

Otorite kontrolü Bunu Vikiveri'de düzenleyin
  • LCCN: sh96009509
  • NLI: 987007566261605171