Dirichlet-èta-functie

De Dirichlet-èta-functie η ( s ) {\displaystyle \eta (s)} in het complexe vlak. De kleur van een punt s {\displaystyle s} codeert voor de waarde van η ( s ) {\displaystyle \eta (s)} . Sterke kleuren duiden op waarden dicht bij nul en de tint codeert voor de waarde van het argument.

In de analytische getaltheorie, een deelgebied van de wiskunde, wordt de Dirichlet-èta-functie gedefinieerd door de onderstaande Dirichlet-reeks, die voor alle complexe getallen met reëel deel > 0 convergeert.

η ( s ) = n = 1 ( 1 ) n 1 n s = 1 1 s 1 2 s + 1 3 s 1 4 s + {\displaystyle \eta (s)=\sum _{n=1}^{\infty }{(-1)^{n-1} \over n^{s}}={\frac {1}{1^{s}}}-{\frac {1}{2^{s}}}+{\frac {1}{3^{s}}}-{\frac {1}{4^{s}}}+\cdots }

Deze Dirichlet-reeks is de alternerende som die correspondeert met de Dirichlet-reeksontwikkeling van de Riemann-zèta-functie, ζ(s) - en om die reden staat de Dirichlet-èta-functie ook wel bekend als de alternerende zètafunctie, ook aangeduid met ζ*(s). De volgende eenvoudige relatie geldt:

η ( s ) = ( 1 2 1 s ) ζ ( s ) {\displaystyle \eta (s)=\left(1-2^{1-s}\right)\zeta (s)}

Dit verbindt de Riemann-zeta functie met de eta functie, en voorziet in een analytische voortzetting van de Riemann zeta functie tot het domein R e ( s ) > 0 {\displaystyle Re(s)>0} . Dit is een belangrijke stap, omdat het domein van de zeta functie daarmee uitgebreid wordt met de kritieke strook, waar alle niet-triviale nulpunten te vinden zijn die de kern vormen van de Riemann-hypothese.