Sphere packing in a sphere

Sphere packing in a sphere is a three-dimensional packing problem with the objective of packing a given number of equal spheres inside a unit sphere. It is the three-dimensional equivalent of the circle packing in a circle problem in two dimensions.

Number of
inner spheres
Maximum radius of inner spheres[1] Packing
density
Optimality Arrangement Diagram
Exact form Approximate
1 1 {\displaystyle 1} 1.0000 1 Trivially optimal. Point
2 1 2 {\displaystyle {\dfrac {1}{2}}} 0.5000 0.25 Trivially optimal. Line segment
3 2 3 3 {\displaystyle 2{\sqrt {3}}-3} 0.4641... 0.29988... Trivially optimal. Triangle
4 6 2 {\displaystyle {\sqrt {6}}-2} 0.4494... 0.36326... Proven optimal. Tetrahedron
5 2 1 {\displaystyle {\sqrt {2}}-1} 0.4142... 0.35533... Proven optimal. Trigonal bipyramid
6 2 1 {\displaystyle {\sqrt {2}}-1} 0.4142... 0.42640... Proven optimal. Octahedron
7 1 3 + 2 cos ( π 18 ) 2 + 2 3 cos ( π 18 ) + 1 {\displaystyle {\frac {1}{{\frac {{\sqrt {3}}+2\cos \left({\frac {\pi }{18}}\right)}{\sqrt {2+2{\sqrt {3}}\cos \left({\frac {\pi }{18}}\right)}}}+1}}} 0.3859... 0.40231... Proven optimal. Capped octahedron
8 1 2 + 1 2 + 1 {\displaystyle {\frac {1}{{\sqrt {2+{\frac {1}{\sqrt {2}}}}}+1}}} 0.3780... 0.43217... Proven optimal. Square antiprism
9 3 1 2 {\displaystyle {\frac {{\sqrt {3}}-1}{2}}} 0.3660... 0.44134... Proven optimal. Tricapped trigonal prism
10 0.3530... 0.44005... Proven optimal.
11 5 3 2 + 5 2 5 {\displaystyle {\dfrac {{\sqrt {5}}-3}{2}}+{\sqrt {5-2{\sqrt {5}}}}} 0.3445... 0.45003... Proven optimal. Diminished icosahedron
12 5 3 2 + 5 2 5 {\displaystyle {\dfrac {{\sqrt {5}}-3}{2}}+{\sqrt {5-2{\sqrt {5}}}}} 0.3445... 0.49095... Proven optimal. Icosahedron

References

  1. ^ Best packing of m>1 equal spheres in a sphere setting a new density record